Temperature-Related Divergence in Experimental Populations of DROSOPHILA MELANOGASTER. I. Genetic and Developmental Basis of Wing Size and Shape Variation.
نویسندگان
چکیده
The effects of environmental temperature on wing size and shape of Drosophila melanogaster were analyzed in populations derived from an Oregon laboratory strain kept at three temperatures (18 degrees , 25 degrees , 28 degrees ) for 4 yr. Temperature-directed selection was identified for both wing size and shape. The length of the four longitudinal veins, used as a test for wing size variations in the different populations, appears to be affected by both genetic and maternal influences. Vein expression appears to be dependent upon developmental pattern of the wing: veins belonging to the same compartment are coordinated in their expression and relative position, whereas veins belonging to different compartments are not. Both wing and cell areas show genetic divergence, particularly in the posterior compartment. Cell number seems to compensate for cell size variations. Such compensation is carried out both at the level of single organisms and at the level of population as a whole. The two compartments behave as individual units of selection.
منابع مشابه
A Single Basis for Developmental Buffering of Drosophila Wing Shape
The nature of developmental buffering processes has been debated extensively, based on both theoretical reasoning and empirical studies. In particular, controversy has focused on the question of whether distinct processes are responsible for canalization, the buffering against environmental or genetic variation, and for developmental stability, the buffering against random variation intrinsic i...
متن کاملAn interspecific QTL study of Drosophila wing size and shape variation to investigate the genetic basis of morphological differences.
The Drosophila wing has been used as a model in studies of morphogenesis and evolution; the use of such models can contribute to our understanding of mechanisms that promote morphological divergence among populations and species. We mapped quantitative trait loci (QTL) affecting wing size and shape traits using highly inbred introgression lines between D. simulans and D. sechellia, two sibling ...
متن کاملNo effect of environmental heterogeneity on the maintenance of genetic variation in wing shape in Drosophila melanogaster.
Theory suggests that heterogeneous environments should maintain more genetic variation within populations than homogeneous environments, yet experimental evidence for this effect in quantitative traits has been inconsistent. To examine the effect of heterogeneity on quantitative genetic variation, we maintained replicate populations of Drosophila melanogaster under treatments with constant temp...
متن کاملThermal evolution of pre-adult life history traits, geometric size and shape, and developmental stability in Drosophila subobscura.
Replicated lines of Drosophila subobscura originating from a large outbred stock collected at the estimated Chilean epicentre (Puerto Montt) of the original New World invasion were allowed to evolve under controlled conditions of larval crowding for 3.5 years at three temperature levels (13, 18 and 22 degrees C). Several pre-adult life history traits (development time, survival and competitive ...
متن کاملAconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 109 4 شماره
صفحات -
تاریخ انتشار 1985